Keynote Speakers

Prof. Yao-Tung Lin

Prof. Yao-Tung Lin

Lifetime Distinguished Professor, Department of Soil and Environmental Sciences, National Chung Hsiung University, Taiwan
Speech Title: To be updated

Abstract: To be updated



Prof. Ming-Chun Lu

Prof. Ming-Chun Lu

Distinguished Professor, Department of Environmental Engineering, National Chung Hsing University, Taiwan
Speech Title: Application of fluidized bed homogeneous crystallization technology for recovering metals and non-metals from water and capturing carbon dioxide from flue gas

Abstract: This presentation will introduce the revolutionary fluidized bed homogeneous crystallization technology, a world-leading advancement in recovering metal and non-metal ions from water without heterogeneous seeding. This innovative technology combines multiple treatment functions in a single fluidized bed reactor, occupying just one-third of the land area required by traditional precipitation processes. The resulting granular crystals have a remarkably low water content of only 5%, offering significant cost savings—up to 60% in sludge treatment costs, even when treated as waste. Additionally, because heterogeneous crystal seeds are not used, this technology can produce high-purity crystals that are reusable. From a carbon reduction perspective, this crystallization method boasts higher dehydration efficiency, reducing carbon dioxide emissions by nearly 300 kilograms per ton compared to sludge produced by traditional chemical precipitation methods.

This innovative crystallization technology can also be combined with carbon dioxide alkaline absorption to effectively convert carbon dioxide from factory flue gas into carbonate. The carbonate then undergoes a crystallization reaction in the fluidized bed reactor, producing calcium carbonate granules with calcium ions. The absorption liquid used in the crystallization tank is recycled back to the absorption tank, enhancing process sustainability. One of the key strengths of this technology lies in its high carbon dioxide capture efficiency, achieving a cross-sectional area loading of up to 20 kg CO2/m2/hr. This demonstrates its effectiveness in capturing carbon dioxide from flue gas streams. During the presentation, specific design and operating parameters will be discussed, along with an exploration of the granulation mechanism, which plays a crucial role in forming high-quality calcium carbonate crystals.